High Pressure Earth Science. Physical Properties of Silicate Melt at High Pressure.
نویسندگان
چکیده
منابع مشابه
Transport properties of carbonated silicate melt at high pressure
Carbon dioxide, generally considered as the second most abundant volatile component in silicate magmas, is expected to significantly influence various melt properties. In particular, our knowledge about its dynamical effects is lacking over most of Earth's mantle pressure regime. Here, we report the first-principles molecular dynamics results on the transport properties of carbonated MgSiO3 liq...
متن کاملChemical diffusion of fluorine in jadeite melt at high pressure
The chemical diffusion of fluorine in jadeite melt has been investigated from 10 to 15 kbars and 1200 to 14OO“C using diffusion couples of jadeite melt and fluorine-bearing jadeite melt (6.3 wt.% F). The diffusion profile data indicate that the diffusion process is concentration-independent, binarv. F-O interdiffision. The F-O interdiffusion coefficient ranges from 1.3 X IO-’ to 7.1 X lo-’ cm*/...
متن کاملHIGH PRESSURE BEHAVIOR OF KCl: STRUCTURAL AND ELECTRONIC PROPERTIES
The high pressure behavior of the structural and electronic properties of KC1 is studied with use of the density functional pseudopotential method within local-density approximation. Atzero pressure, the rocksalt phase is found to be lower in energy than CsCl structure. However, we predict a phase transition into CsCI structure at a pressure of about 1.5 GPa. The calculated ground state pro...
متن کاملThe high-pressure dimension in earth and planetary science.
B y far the bulk of our planet is hidden from view, within the earth, under high pressures and temperatures. The behavior of this material dictates the formation, evolution, and present state of the solid earth. Recent geophysical and geochemical studies of the planet present us with a rich array of large-scale processes and phenomena that are not fully understood. These range from the fate of ...
متن کاملMagnetic properties of PrCu2 at high pressure
We report a study of the low-temperature high-pressure phase diagram of the intermetallic compound PrCu2, by means of molecular-field calculations and Cu nuclear-quadrupole-resonance (NQR) measurements under pressure. The pressure-induced magnetically-ordered phase can be accounted for by considering the influence of the crystal electric field on the 4f electron orbitals of the Pr ions and by i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: THE REVIEW OF HIGH PRESSURE SCIENCE AND TECHNOLOGY
سال: 1999
ISSN: 0917-639X,1348-1940
DOI: 10.4131/jshpreview.9.11